Hank Nussbacher IBM Israel January 1996

The problem

- 32 bit IP address space
- Foreseen in 1991 by the IETF
- Class B exhaustion
 - » 16,284 class B's, by 1992 half used, predicted by March 1994 no more class B's
- Routing Table Explosion
 - » In July 1990 router manufacturer built on card cache to cope with 10,000 routes, when only 1700 nets were routed
 - » In July 1993 the NSFNET routed 14,000 nets
- IP Address depletion

The Solution - CIDR

- Router technology not keeping up with growth
- RFC1517, 1518, 1519, 1520 September 1993
- IETF interim solution for years 1993-2003
- Classless Inter-Domain Routing
- Allows IP address prefixing
- Also known as route aggregration
- Problem with address ownership
- IP addresses no longer allocated for individual users
- IP addresses now allocated in block to ISPs (Internet Service Providers

Coordinated Address Allocation:

 Multiregional
 192.0.0.0 - 193.255.255.255

 Europe
 194.0.0.0 - 195.255.255.255

 Others
 196.0.0.0 - 197.255.255.255

 North America
 198.0.0.0 - 199.255.255.255

 Central/South America
 200.0.0.0 - 201.255.255.255

 Pacific Rim
 202.0.0.0 - 203.255.255.255

 Others
 204.0.0.0 - 207.255.255.255

CIDR continued

- Customers need to renumber when switching providers
- Black box IP address translation devices
- IPv6 to allow IP number portability
- Customers unaware that IP addresses assigned the past 2 years do not belong to them
- CIDRization to be with us for the next 10 years
- Currently 3 routers handle full routing tables: Cisco, Wellfleet and IBM

Multicast

- First audio transmission from IETF in March 1992
- First audio and video transmission from IETF in June 1992
- Uses special IP address of 224.0.0.0 reserved for multicasting
- Algorithms include flooding (just like Usenet news), spanning trees, reverse path forwarding, Steiner trees and core based trees
- Steve Deering, Stanford University, PhD thesis
- Mbone uses RPF
- Mbone is an overlay network on top of the Internet

Multicasting continued

- DVRMP Distance Vector Multicast Routing Protocol
- IGMP Internet Group Membership Protocol
- Tunnels used to link multicast islands
- Public domain software provided on various Unix platforms
 - » mrouted turns Unix into a multicast router
- Mbone first broadcast from Israel at Jenc95 in May 1995 by Machba
- Mbone first demonstrated at Infotech 1995 in October 1995 by IBM
- Overwhelming demand to "book" broadcast slots on an experimental service

Multicasting continued

- Unix workstations have limited I/O capability as compared to routers and therefore can't handle as many packets per second
- Result: Mrouted stations have to limit the number of tunnels they can handle
- Future:
- Multicast extensions to OSPF MOSPF published March 1994
- PIM Protocol Indepedent Multicast to be published by end of 1995

Mobility

- Mobile computing is not portable computing
- Requirements for mobility
 - » No weakening of security
 - » Multicast capability
 - » Location privacy
- IETF working group started September 1993
 - » Beaconing
 - » Registration
- Problems such as varying throughput and delay will require changes to TCP itself

RSVP

- Async packet switching technology can provide guarantees of service
- Reservation Setup Protocol September 1993
- Realtime applications
- Will allow Internet applications to obtain a required quality of service
- RSVP can allocate bandwidth along a data path for video via the Internet
- Receiver indicates interest in "data flows" to the network
- RSVP to change the charging model currently existing in the Internet

Resource Reservation, continued

- vat part of Mbone audio package
- smoothes packet handoff to loadspeakers
- known as resynchronization
- in audio slightly increases or decreases silence between words to handle resynchronization
- Compression

Rate (bps)) Qua	lity Procedure
2400	40	Highly compressed LPC
3600	45	Compressed LPC
4800	50	LPC
13000	55	GSM
16000	54	2khz ADPCM
24000	60	ADPCM, 3 bit samples
32000	65	ADPCM, 4 bit samples
40000	68	ADPCM, 5 bit samples
64000	73	PCM, 8 bit samples

PCM - Pulse Code Modulation ADPCM - Adaptive Differential PCM LPC - Linear Predication Coding

RTP

- Real Time Protocol
- Indicates what type of data is being sent
- Includes a time-stamp so that data syncronization of audio and video packets can be accomplished at the receiving end
- Draft RFC for payload format for H.261 video
- Draft RFC for encapsulated JPEG video
- Draft RFC for payload format of MPEG1/MPEG2 video

IPv6

- IP address depletion moved from 2004 to 2008 due to CIDR
- Some wanted to use CLNP from OSI
 - » Would lose multicasting, mobility and resource reservation work already done
- SIP Simple IP increase IP address size to 64 bit
- **PIP** to ease mobility and advanced routing techniques
- PIP and SIP merged in September 1993 to becomes IPng
- IETF decided July 1994 on IPng -> IPv6
- Increase IP addresses from 32 bits to 128 bits
- Automatic Network Configuration
 - » Allows network devices to find and claim their own IP addresses as soon as they are connected to the network
 - » Auto-readdressing to handle mobile users
 - » Mobile IP can replace GSM

Applications

- VRML Virtual Reality Markup Language
- Active Web documents such as Sun Microsystems Java
 - » for images
 - » <APP> for applications
- Visually impaired able to navigate the Web via "listening" to Web pages
- <APP> opens many serious security questions
- Alleviating bandwidth shortage by moving graphics to compute power located at user

PTT

- Sweden's Telia announced "IP networks could ultimately replace parts of the operator's existing access network"
- Telecom Finland continues to push its commercial offering of its voice over IP service

ISDN

- 128kb
- \$500-\$1000 for ISDN "modem"

Satellite

- Hughes Network Systems DirecPC Turbo Internet
- via Galaxy IV satellite
- aggregate speed of 11.79Mb/sec
- maximum incoming 400kb
- outgoing via modem
- \$1300 for 24 inch satellite dish
- \$20-\$40/month for 130Mbytes
- http://www.direcpc.com/home.html

Cable TV

- Hybrid systems
- 500kb to 10Mb incoming
- outgoing via modem
- \$1000 per cable modem
- serious security problems Ethernet sniffing